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Abstract 

In recent years cone constraint optimization problems has been favored by scholars, especially for the 
second-order cone constraints programming problem,they have carried on the detailed study, had got the 
corresponding theoretical achievements. In this paper, on the basis of the existing cone constraint optimization 
problem, we puts forward the definition of projection second-order cone ,we related properties of this cone and the 
corresponding convexity function, the linear projected second-order cone constraint programme problem, the dual 
problem, the optimality conditions ,we can converted it into corresponding second-order cone programme problems. 
 
Keywords: linear projected second-order cone; dual cone constraints; Second-order cone programme problem; dual 
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Introduction 
In recent years, with the development of science 

and technology, the application of computer. Nonlinear 
optimization obtained rapid development and wide 
application [7,10,12,13,18,23]. Especially the 
semidefinite programming and the second-order cone 
programming problem, f. Alizadeth and d. Goldfarb [1] 
introduced the second-order cone programming problem 
in detail, research the linear and nonlinear second-order 
cone constraints programming problem and quadratic 
programming problem. They have introduce the 
relationship between the other convex programming and 
second-order cone constraints problems, using Jordan 
operator interior-point method analyzed  the application 
of the second-order cone programming problem, and the 
semidefinite programming.Scholars use different 
methods to study the the different cone constraints 
problem[3,5,12,14]. In general, we often use different 

method resolve cone constraints programming 
problem.for example penalty function, primal-dual 
interior point, smooth function approximation method, 
semismooth Newton's method and quasi-newton 
method,power iteration method and projection algorithm 
method and so on[6,8,12,16,17 [4]. The complementarity 
system occupies an important status in the constrained 
optimization problems, So research the property of cone 
is very important in the complementarity system[5,14,22 
[3].In this paper, on the basis of the existing cone 
constraint optimization problem we put forward the 
definition of projection second-order cone, search the 
properties of the cone and its dual cone. 
 

In order to give definitions of projected second-
order cone, we first solve below function: 
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is the project second-order cone. If 0=x ,we 

assumption { }0=K . 

We be represent project second-order cone as 
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euclidean norm ）. 

Theoren 1.1：K  is self dual, And += KK ,so we have 
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Proof: For Kx ∈∀ , Ky ∈∀ ,if  0=x or 0=y , It is obvious 0, =yx . 

If 0≠x , 0≠y ,By the define 1.1 we have  
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left-hand side above we have  
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Above all,we obtain += KK . 

Define 1.2  −K is the polar cone of K  if { }KxyxyK ∈∀≤=− ,0, .  
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Theoren 1.2：For Kx ∈∀ , Ky ∈∀ , 0≠x , 0≠y ,if 0, =yx ,we obtain x , BKy ∈ .( BK denote the cone 

shell).And if BKx ∈ ,we have 
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Proof: Assumption BKx ∉ .As 0, =yx , 0, =yx  is continuity function, in the domain of )0( >⊂+ εε KBx , 

there exist { } )0( >+∈ εεBxz satisfi 0, <yz  contradictory the assumption. 

We can be proven BKy ∈ . 

Define 1.3  For Kx ∈ , +∈ Ky if 0, =yx ,we have 

)
2

1
,,

2

1
,

2

1
(

11

2

1

1 ∑∑∑
===

−−−=
n

i

m
i

m

i
i

m

i
i

x
x

m

x
x

m

x
x

m
ty L （ 0>t ,if Kx int∈ we assuption 0=t ）. 

Proof: If Kx int∈ ,and 0=t ,It is obvious. 

 If BKx ∈ ,From the Theoren 1.2 we know BKy ∈ .We only need to prove 
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To selve this equation we have 
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Proposition 1.1  K  is pointed and convex cone. 

Proof: Because 0=∩ −KK ,so K  is pointed . 

Now we proof it convex,for Kyx ∈∀ , , [ ]1,0∈t .we only proof  
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, K  is convex cone. 

    It very important to research the tangent cone, normal cone and the definition of the second order tangent set for the 
project second-order cone.J. Frederic and H. Ramirecz C [24] had dicuss first and second order optimality condiition for 
nonlinear second-order programming.. Before we discuss these cones, we first presents the function of the project second-
order cone 

If K  is a project second-order cone we have: 
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By the right-hand side above we have 
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Now we consider project second-order cone programming problem 

（P） cxmin  

bAxsb =  

Kx ∈  

A  is a  row full rank matric ,K  is project second-order cone . 
The dual of (P) 

(D) πΤbmax  

cyAsb =+Τπ          

Ky ∈  

We know the dual problem is very important in cone constraints programming, for the second-order cone, ice cream cone, 
cone, geometry cone constraints constraint programming [15,16,17,22 ,22] have discussed . 

Assumptions *p and *d  is the original problem and solution of dual problem respectively, *x  and ),( ** yπ the 

corresponding solution sets. We have  

0****** ≥=−=− ΤΤΤ yxbxcdp π  

It is clear that the solution of original problem is the supremum of the dual problem solution, if 0** >− dp  then the 

original problem and the have the duality gap . 

If Kx int* ∈  (or ),( ** yπ Ky int* ∈  ), then *x   (or ),( ** yπ Ky int* ∈ ) is strictly feasible solution of original 

problem (strictly feasible solution of dual problem). 
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If −∞=*p  (or +∞=*d ), then we call the original problem (or the dual problem )is unbounded. If +∞=*p  (or 

∞= -*d ), then the original problem (or the dual problem ) is no feasible solution. When the original problem and the dual 
problem has strictly feasible solution, then the duality gap is 0. 
For linear projection of second-order cone constraints problem can be converted into into a linear second-order cone 
constraints. 
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