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Abstract
In recent years cone constraint optimization pnuisiehas been favored by scholars, especially for the
second-order cone constraints programming probhem,thave carried on the detailed study, had got the
corresponding theoretical achievements. In thisepapn the basis of the existing cone constrairinopation
problem, we puts forward the definition of projectisecond-order cone ,we related properties ofcihie and the
corresponding convexity function, the linear prégecsecond-order cone constraint programme proktieendual
problem, the optimality conditions ,we can conwveiitanto corresponding second-order cone programprablems.
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I ntroduction

In recent years, with the development of science
and technology, the application of computer. Ncadin
optimization obtained rapid development and wide
application [7,10,12,13,18,23]. Especially the
semidefinite programming and the second-order cone
programming problem, f. Alizadeth and d. Goldfaff [
introduced the second-order cone programming pnoble
in detail, research the linear and nonlinear seaoddr
cone constraints programming problem and quadratic
programming problem. They have introduce the
relationship between the other convex programmind a
second-order cone constraints problems, using dorda
operator interior-point method analyzed the apian
of the second-order cone programming problem, had t
semidefinite  programming.Scholars use different
methods to study the the different cone constraints

method resolve cone constraints programming
problem.for example penalty function, primal-dual
interior point, smooth function approximation metho
semismooth Newton's method and quasi-newton
method,power iteration method and projection atbari
method and so on[6,8,12,16,17 [4]. The complemémntar
system occupies an important status in the constai
optimization problems, So research the propertgaofe

is very important in the complementarity systemjs22
[3].In this paper, on the basis of the existing e&on
constraint optimization problem we put forward the
definition of projection second-order cone, seatich
properties of the cone and its dual cone.

In order to give definitions of projected second-
order cone, we first solve below function:

problem[3,5,12,14]. In general, we often use défer Assumption
P=(p,p---p)andPOR™, p=0, For the function
minimum f(P):%(xl— p)2+%(x2— p)2+~-~+%(xm— o)’

i=1

with X [J Rm,Z:Xi > 0.We havep =

i=1

is the solution of the above function.
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Define 1.1 The K = {X% (Xl p) * (X2 ||r;)<l?2 Tt (Xm p) < %} is the project second-order cone.Xf= 0,we

assumptiorK = {O}

2
We be represent project second-order con & {X{r‘rﬂxﬂz < Zm: Xij } (Zm: X 20, p= %Zm: X; (||[n] denote
i i=1 i=1

i=1

euclidean norn .

m 2
Theoren 1.1 : K is self dual, AndK = K" ,s0 we haveK ™ = {X{r‘rﬂxﬂz < 2[2 Xij }
=

Proof: For XK,y K ,if x=0o0r y=0,ltis obvious<X, y> =0.
If x# 0,y # 0,By the define 1.1 we have

{(Xl_r::lg)(ijz+(X2_;EXijz-F.“-F(Xm_:]gXijz]z
4
M
) y ) h - By the

>~

left-hand side above we have

R R Y
CVEE R WEE LY
4 1y 1 (<
0 L s (x| o L s (3w |
So(x, y>ZEiZ:1: X, DZ::yi —%||x|| dy|=o0.

Above all,we obtainK = K ™.
Define1.2 K is the polar cone oK if K™ = {yKX, y> <0,0x0O K}.
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Theoren 1.2: For xOK,OyOK ,x#0,y#0,if <X, y> =0,we obtain X,yUK;.(Kgdenote the cone
m N2

shell).And if X (1 K ,we haven|x|* = 2[2 Xij .
i=

Proof: Assumption X1 K .As <X, y> = O,<X, y> =0 is continuity function, in the domain ok +&B [0 K(& > 0),
there existz D{X + EB}(&‘ >0) satisfi< z, y> < 0 contradictory the assumption.

We can be provery UK.

Define1.3 Forx OK ,yOK™ if<X, y) = 0,we have

18 X 18 X, 18 X _ . .
=t(—=)) X ——,— ) X ——,---,— > X ——) (t>0,if xUintK we assuptioh =0) .
y (m; 2 mzll 2" "m& N ) P

Proof: If XOint K ,andt = 0,lt is obvious.

2
m
If X Kg,From the Theoren 1.2 we knoy [] K;.We only need to proveﬁ'ﬂy”2 = z yij from the define 1.1
—

we have

2
To selve this equation we ha\lﬂ#)(”2 = Z(Zm: Xij :
i=1

Proposition 1.1 K is pointed and convex cone.
Proof: BecauseK N K~ =0,s0 K is pointed .
Now we proof it convex,fof Ix, y 1 K ,t [ [O,l] .we only proof

- 2
Mg + -0y, +[oc, + Q-0+ +x, + @1y, [} 2[2txi + (1—t)yi}
This nonequality equal -

mzm:XiYi Szzm‘,xizm:yi
i=1 i=1 i=1
from the define 1.1 we ha\/la‘")(”2 < z Xij and n1|y||2 < 2(2 yij .
i=1 i=1
PRDNY

i=1 i=1

My

It very important to research the tangent conemabrcone and the definition of the second ordegéan set for the
project second-order cone.J. Frederic and H. Rami@ [24] had dicuss first and second order opitsalndiition for
nonlinear second-order programming.. Before weudis¢these cones, we first presents the functidheoproject second-
order cone

If K is a project second-order cone we have:

<1,K is convex cone.
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K :{XD R" qb(x):\/ﬁ”x”—\/izm:xi so}.
i=1

Proposition 1.2 The function(ﬂ(x) = \/r_ngﬂ(x) = \/r_n||x|| - \/Ezm: X < O convex and derivabl@roof: We need to

oroot A2)2 )+ X} (2%

Vmx, =24

X
" n Vmx, V2|
aS\/r_n”Z” —\/Ez zZ 2 \/r_n”)(” _\/EZ X + ((21 - Xl)l (Zz - Xz)""’(zm - Xm)) ”X”

Jmx,, =2
B

By the right-hand side above we have

il -2y x +
> %2 > %2

So ||Z|| ' . As we know-———— | < 1. The proof is completed.

T TE

Now we consider project second-order cone programgmpioblem

ZXIZ, \/_Zx —Jmx]| - \/_ZZ

(P) min cx
sb Ax =b
Xx UK

A is a row full rank matricK is project second-order cone .
The dual of (P)

MO)ymax b'mr
sb A'm+y =c
y OK

We know the dual problem is very important in caoastraints programming, for the second-order cmee¢cream cone,
cone, geometry cone constraints constraint progiamfi5,16,17,22 ,22] have discussed .

Assumptions p* and d* is the original problem and solution of dual pevhl respectively,x* and (ﬂ*,y*)the
corresponding solution sets. We have

* * * * *T *
p-d =c'x -b'7r =x "y =20
It is clear that the solution of original problemthe supremum of the dual problem solutionpi*f —d” >0 then the
original problem and the have the duality gap .
If X OintK (or (77,y") y OintK ), thenx  (or (/7 ,y") y" OintK) is strictly feasible solution of original
problem (strictly feasible solution of dual problem
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If p* = —0o (ord* = +00), then we call the original problem (or the duablgem )is unbounded. p* =+o0o (or

d =-o ), then the original problem (or the dual problei®s ho feasible solution. When the original problend the dual

problem has strictly feasible solution, then thalidy gap is 0.

For linear projection of second-order cone constraintblpm can be converted into into a linear secomioicone

constraints.

2
Let X, =\/:(X1 + X, +---+Xm),we have

. T—
min X

sb

< Zl o

=b
OK

And €= (0,C,,Cpre++,Cr ) X = (X0 X Xg0eo+ X ) L A

b=(0b,b,,--,b,) K is second-order cone.
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